
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formulas:

$$
\cdot \mathrm{MRP}=\mathrm{MR} \times \mathrm{MPP}
$$

Or change in TR/change in LABOR

- $\mathrm{VMP}=\mathrm{P} \times \mathrm{MPP}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

MRP VS VMP:
-A resource's MRP reflects its value to the firm, which
is not always the same as its value to society.
-A resource's MSB is the value as measured by the
price of its marginal physical product.(MPP)
-VMP is a measure of a resource's value to society

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Demand for labor shift factors:

- Output prices
-Price of other resources(substitutes vs complements)
-Technology
-Quality of labor(human capital)

\qquad

Determinants of the supply of labor:

-Population
-Preferences(labor vs leisure)

-Real wage
-Human capital

Labor vs leisure:

- Substitution effect- increase wage leads to decrease in consumption of leisure
-Income effect- leisure is a normal good. Increasing income increases the demand for a normal good.

Imperfect competition in the output market

-Firms with market power raise prices and restrict output. The result is fewer resources are employed

- Market power allows you to pay workers less than the social value of their output
-Since $p>$ MR ; VMP $>$ MRP

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Monopsony(imperfect competition in

 the labor market):-If the supply of labor facing a individual firm is positively sloped, then the wage increases that must be granted to all workers cause the MFC curve to lie above the supply curve

Unions:
-Closed shop- make union membership a prerequisite
for employment
-The Taft-Hartley act(1947) outlawed the closed shop

Union strategies to raise wages:

\qquad
-Rationing work
-Restricting the labor supply
-Stimulation the demand for labor
-featherbedding

Rationing Work:
-A union that controls all of an industry's work force
might simply bargain for a higher wage.
:---

Restricting the supply of labor:

-The union movement has supported policies such as child labor laws, restrictive immigration policies, compulsory retirement plans and shorter work weeks
\qquad

Stimulation the demand for union labor:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Featherbedding:

-Work rules that artificially boost the number of workers required for certain task
-Long after coal engines were replaced by diesel, railroad unions insisted that trains carry firemen
-Featherbedding was made illegal by the Taft-Hartley act

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Interest
\bullet Interest amount $=$ P x i x n
$\bullet \mathrm{p}=$ principle
$\cdot \mathrm{i}=$ interest rate
$\bullet \mathrm{n}=$ number of periods
•Assume you invest $\$ 1,000$ at 6% simple interest for 3
years.
\bullet You would earn $\$ 180$ interest
$\bullet(\$ 1000 \times .06 \times 3=\$ 180)$.

\qquad
\qquad
\qquad
\qquad
\qquad
You would earn \$180 interest
\qquad
\qquad

Compound interest

-When we compound interest we assume you earn \qquad interest on both principal and interest
\qquad
-Assume we will save $\$ 1,000$ for three years and earn 8% interest compounded annually \qquad

\qquad
\qquad
\qquad

Compound interest	
Original balance	$\$ 1,000$
First year interest	$\frac{60}{}$
Balance, end of year	$\$ 1,060$
	$\$ 1,060$
Balance, beginning of year two	$\$ 1,123.60$
Second year interest	
balance, end of year two	

\qquad

Compound interest	
Balance, beginning of year three	$\$ 1,123.60$
Third year interest	$\frac{67.42}{\$ 1,191.02}$
Balance, end of year three	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

future value of a single amount
writing in a more efficient way, we can say...
$1000 \times 1.06 \times 1.06 \times 1.06=\$ 1191.02$
or
$1000 \times(1.06)^{3}=\$ 1,191.02$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
present value of a single amount
Remember our equation?
$\mathrm{FV}=\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}}$
We can solve for PV and get...
$\mathbf{P V}=\frac{\mathbf{F V}}{(1+\mathrm{i})^{\mathrm{n}}}$

Question

Assume you plan to buy a new car in 5 years. You think it will cost $\$ 20,000$ at that time.
\qquad
\qquad
What amount must you invest today in order to accumulate $\$ 20,000$ in 5 years, if you can earn 8% \qquad interest compounded annually.

\qquad
\qquad
\qquad

Consistent interest periods and rates

\qquad
How would we calculate the amount to be invested today in order to accumulate $\$ 20,000$ in 5 years, if you
\qquad can earn 8% interest compounded quarterly? \qquad
\qquad
\qquad
\qquad
\qquad

Consistent interest periods and rates
Because there are 4 compounding periods \qquad
$8 \% / 4=2 \%$ rate
$5 \times 4=20$ periods \qquad
we will use 2% as the interest rate and 20 as the
\qquad number of periods \qquad
\qquad
\qquad
-the present value of each cash flow is given by the following

$$
P V=\frac{C_{1}}{(1+i)}+\frac{C_{2}}{(1+i)^{2}}+\cdots+\frac{C_{n}}{(1+i)^{n}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Net present value rule: \qquad

Accept if the project has a positive net present value
\qquad

Example 1:

-Suppose a project requires an initial investment of \$60,000
\qquad

- At the end of the first year you expect to lose $\$ 20,000$
- At the end of the second year(also the end of the project) you expect to gain $\$ 100,000$
- You asses that, given the risk of the project, a cost of capital of 12% is appropriate.
-Should you accept the project?

Example 1:
Do the project because it has a positive NPV
$\mathrm{NPV}=-60,000+\frac{20,000}{(1+0.12)}+\frac{100,000}{(1+0.12)^{2}}$ $=-60,000-17,857.14+79,719.39$ $=1862.25>0$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expanding capital stock:

\qquad
A firm can finance its purchase of capital in several ways
\qquad
-funds on hand \qquad
-sell shares of stock
-borrow from a bank \qquad
-sell its own bonds
Regardless of the method of financing chosen, a critical factor in the firm's decision on whether to acquire capital is the interest rate

Expanding capital stock:

-The interest rate gives the opportunity cost of using \qquad funds to acquire capital rather than putting the funds to the best alternative use to the firm

\qquad
\qquad
\qquad
\qquad
\qquad

Demand for loanable funds:

- A firm's decision to acquire capital depends on the net present value of capital
- The lower the interest rate, the greater the amount of capital firms will want to acquire.
-Lower interest rates translate into more capital with positive net present values.
-The desire for more capital means, in turn, a desire for more loanable funds.

Supply of loanable funds:

-Lenders supply funds to the loanable funds market.
-Lenders are consumers or firms that determine that they are willing to forgo some current use of their funds in order to have more available in the future.
-In general, higher interest rates make the lending option more attractive.

Shifts:

- An increase in the demand for capital will cause an increase in the demand for loanable funds.
-Example: If firms are optimistic about the future of the economy, they will want to invest in capital. To buy the capital the need loanable funds.
-The supply of loanable funds is affected by the willingness of people to save.
-Exanple: People expect high inflation in the future and do not want to save. The supply of loanable funds will decreade

